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Abstract 
 
This paper profiles the emergence of a significant body of research in audio engineering 
within the Faculties of Engineering and Applied Arts at Dublin Institute of Technology. 
Over a period of five years the group has had significant success in completing a Strand 3 
research project entitled Digital Tools for Music Education (DiTME), followed by 
successful follow-on projects funded through both the European Framework FP6 and 
Enterprise Ireland Commercialisation research schemes. The group has solved a number 
of challenging problems in the audio engineering field and has both published widely and 
patented a novel sound source separation invention. 
 
 
1 Introduction: background to the DiTME project 
 
In line with policy on research emanating from the Dublin Institute of Technology 
Strategic Plan 2001–2015, with encouragement to engage in creative interdisciplinary 
activity, a merger was formed at the turn of the millennium between the Faculty of 
Engineering and the Faculty of Applied Arts, via the School of Control Systems and 
Electrical Engineering and the Digital Media Centre (DMC). The intended aim was to 
bring together a cross-faculty body of researchers with interest in developing creative 
projects, thereby facilitating the artistic talents of staff members from the Faculty of 
Applied Arts with the mathematical, computing and signal processing skills of key staff 
members from the Faculty of Engineering. 
 
 Teaching, learning and research in music technology is a vibrant and growing 
discipline area, bordering upon and crossing a number of scholarly fields, including 
creative arts, music teaching, engineering and computing. The discipline offers exciting 
possibilities to school-leavers with an interest in music and technology. Rapid 
advancements in recent years in product development in audio and related technologies 
have been achieved by the application of engineering and scientific skills and know-how. 
As outlined in April 2000 in the report ‘Technology, foresight and the university sector’ 
by the CIRCA Group Europe Ltd, for the Conference Heads of Irish Universities, Digital 
Signal Processing (DSP) had been identified as a fast-growing and enabling core 
technology behind many of the recent developments in the information technology (IT) 
and telecommunications sectors and was noted as an area of immediate concern in respect 
of enhanced research growth and development at national level. Likewise, Digital Media 
has been recognised as one of Ireland’s strategic research and development priorities by 
Enterprise Ireland, Forfás, the Information Society Commission and many other 
independent reports. 
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1.1 Technological Strand 3 research application 
 
Following an application to the Department of Education Technological Research Sector 
Strand 3 scheme in April 2001, the emerging audio group at DIT was successful in its 
application for an interdisciplinary project titled Digital Tools for Music Education 
(DiTME). The project proposed an integrated array of research objectives in music 
technology, with development of a toolkit to run on a standard multimedia PC, and a with 
a number of novel features which would be of benefit to both teachers and students of 
musicianship at all levels. These included 
 

• a slow-down/speed-up facility which would not affect the pitch of the 
recorded music 

• an instrument separation facility to ‘comb out’ a lead instrument from a 
piece of recorded music 

• a music transcription facility to convert recorded music into music 
notation. 

 
 It is often beneficial for students to play along with an accompaniment whilst 
practising. A live accompaniment is not always available and a recording may be used 
instead. However, this accompaniment will have been recorded at a certain fixed tempo. 
Time-scale modification algorithms may be used to enable independent control of the 
playback rate (without change of key) to suit a student’s current learning cycle. The 
desirability of such a facility for music teaching and learning had been ratified by a 
number of music teaching professionals in the conservatory of music at DIT. 
 

 The task of extracting individual sound sources from a number of recorded 
mixtures of those sound sources is often referred to as sound source separation. Audio 
source separation is a complex problem, however significant benefits and possibilities 
present if an audio mixture can be separated into signals that are perceptually close to the 
original before mixing. For example in the study of musicianship, from the most 
elementary stages through to virtuoso performance, the service of a competent 
accompanist during practice is highly desirable though not always feasible. Further, much 
music is scored for orchestral accompaniment but few aspiring instrumental or vocal 
musicians have the regular opportunity to rehearse with a professional orchestra. Music 
Minus One (MMO; see http://www.musicminusone.com) recognized this dilemma over 
50 years ago and has recorded a library of over 400 CDs containing the most requested 
accompaniments (orchestral as well as piano) for a wide range of music including 
classical, jazz, rock ‘n’ roll and country and western. However, the accompaniments are 
recorded by professional orchestras and accompanists playing with virtuoso soloists, so 
the trainee musician needs to have reached a very advanced level in order to use an MMO 
accompaniment. If the lead instrument (or voice) could be ‘combed out’ of any ensemble 
recording then any audio CD could be transformed into an MMO format. Such a facility 
would be useful for both the trainee lead-part musician and the trainee accompanist. 
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 A third highly desirable feature of the proposed music teaching and learning 
‘toolkit’ suggested by the DIT target users is a music transcription facility. Music 
transcription refers to the process of converting recorded music into music notation. 
Existing automatic transcription systems are limited to simple monophonic (one note at a 
time) music. For polyphonic (more than one note at a time) the only reliable means of 
transcription is a very tedious manual process involving repeatedly listening to short 
segments of the music and comparing them to known tones. For fast music such as Irish 
traditional music this is often impossible. If such music can be slowed down and the lead 
instrument separated from the ensemble recording, then this will help to develop an 
automatic transcription algorithm. 

2 Audio time-scale modification 
 
Audio time-scale modification (TSM) is an audio effect that enables either speeding up or 
slowing down, i.e. altering the duration, of an audio signal without affecting its perceived 
local pitch and timbral characteristics. In other words, the duration of the original signal 
is increased or decreased but the perceptually important features of the original signal 
remain unchanged. In the case of speech, the time-scale signal sounds as if the original 
speaker has spoken at a quicker or slower rate. In the case of music, the time-scaled 
signal sounds as if the musicians have played at a different tempo. Transforming audio 
into an alternative time-scale is a popular and useful digital audio effect that has become 
a standard tool within many audio multi-processing applications. 
In addition to music teaching and learning TSM has numerous applications, including: 
 

• accelerated aural reading for the blind 
• music composition 
• audio data compression 
• text-to-speech synthesis 
• audio watermarking 
• fast browsing of speech material for digital library and distance learning. 

 
 In order to achieve implementation of audio time-scale modification there are two 
broad categories of time-scale modification algorithms which may be applied: time-
domain and frequency-domain. Time-domain techniques are computationally efficient 
and produce high quality results for single pitched signals such as speech and 
monophonic music, but do not cope well with more complex signals such as polyphonic 
music. Frequency-domain techniques are less computationally efficient, however they 
have proven to be more robust and produce high quality results for a variety of signals. A 
perceived drawback of frequency-domain techniques is the knowledge that they can 
introduce a reverberant or phasy artefact into the output signal. 
 
 In completing the research for his Ph.D. in audio time-scale modification, David 
Dorran focused on incorporating aspects of time-domain techniques into frequency-
domain techniques in an attempt to reduce the reverberant artefact and improve upon 
computational demands. 
 
2.1 Time-domain techniques 
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In basic terms, time-domain techniques operate by discarding or repeating suitable 
segments of the input waveform. This process is illustrated in Figure 1 in which a quasi-
periodic waveform is time-scale compressed (reduced in duration) by discarding four 
periods of the original waveform. It should be appreciated that time-scale expansion 
could be achieved in a similar manner through repetition of short segments of the original 
waveform. 
 

 
 

Figure 1 Time-scale compression of a quasi-periodic waveform 
 

 This example may appear somewhat trivial as it applies only to a very short sound 
(the original is an oboe sound of approximately 100 ms duration) that has strong periodic 
characteristics; however, a significant number of everyday sounds change relatively 
slowly over time and are therefore considered to be quasi-periodic over any 50 ms 
duration of the waveform. One query that often arises with regard to the periodicity of 
sounds is in relation to noise-like elements of a waveform, such as the ‘s’ and ‘ch’ part of 
the word ‘speech’ and the onset of a note of a particular instrument. It is often argued that 
such sounds do not contain a distinct period and therefore the discard/repeat process is 
not appropriate for these types of sounds; however, they can be considered periodic in the 
sense that the noise-like sound exists for a significant duration of time and can be viewed 
as the repetition of a very short noise segment over that duration. Therefore 
discarding/repeating short segments of these sounds will also result in time-scale 
expansion or compression of the sound even though they are not periodic in the strictest 
sense of the word. 
 
 Given the assumption of quasi-periodicity, the problem of time-scaling in the 
time-domain then falls into two areas: firstly, the identification of the local pitch period 
and secondly, identification of which segments of the original waveform to 
discard/repeat. 
 
 Identification of the local pitch period has received a significant amount of 
interest within the research community since it also forms an important part of a number 

Discarded segments

Original waveform

Time-scaled waveform
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of other applications such as speaker recognition and music transcription (Kim et al. 
2004; Plumbley et al. 2002). They are also used in other disciplines including biomedical 
signal analysis for detection of heart rate. Existing pitch period detection algorithms tend 
to suffer from what is referred to as ‘octave errors’. For example if the pitch period was, 
for instance, 3 ms the algorithm may inadvertently detect a period of 6 ms, 9 ms or 12 
ms, i.e. integer multiples of the actual period. However, this particular problem does not 
affect the quality produced by time-scaling algorithms, since the quality of the output is 
unaffected regardless of whether we discard one, two or three periods of the waveform. 
The number of periods discarded/repeated does however affect the next location for 
discarding/repeating the ensuing waveform segment. 
 
 The location of the discard/repeat segments is dependent principally upon the 
desired time-scale factor and also the duration of the segment that can be 
discarded/repeated. For speech, Portnoff (1981) notes that the length of each 
discarded/repeated segment should be longer than one pitch period (typically 4 to 20 ms) 
but shorter than the length of a phoneme (approximately 40 ms); these values have also 
been found to produce good results for music. If the duration of every segment 
discarded/repeated was the same, for example 10 ms, the time-scaling procedure would 
be very straightforward; to time-scale expand by 25 per cent, one 10 ms segment would 
be repeated every 40 ms; to time-scale compress by 10 per cent, one 10 ms segment 
would be discarded every 100 ms. In practice, since the duration of the segment being 
discarded or repeated must vary with the local pitch period, a slightly more complicated 
procedure is employed. The exact method used varies from algorithm to algorithm but all 
effectively keep track of the duration of the previous segment which has been 
discarded/repeated. If, for example, a large segment (say 16 ms) has been discarded in a 
particular iteration of the algorithm, then the largest segment that could be discarded in 
the next iteration could be forced to a time window of 4 ms, thereby ensuring that the 
overall time-scaling is preserved at a global level, with small variations in time-scale 
duration at a local level not being generally perceived to be objectionable. 
 
 The procedure outlined in the previous paragraph works well for signals that do 
not contain strong transient components, and is also extremely efficient in terms of 
computational demands. Additional care is required when transients, such as drum 
sounds, occur. The reason for this special treatment of transients is that, by definition, 
they exist for very short periods of time, i.e. less than 5 ms. If a transient segment has 
been discarded or repeated the result is extremely objectionable: consider the effect of 
removing the start of a snare drum – it would no longer sound like a snare. For this 
reason, time-scaling algorithms typically include a transient detection component that 
ensures that this problem does not arise. 
 
2.2 Frequency-domain techniques (sinusoidal modelling and the phase vocoder) 
 
The second technique adapted is that of sinusoidal modelling, which operates on the 
principle that an audio signal can be modelled by the sum of a number of quasi-sinusoidal 
waveforms that are slowly changing in both amplitude and frequency over time. The 
number of sinusoidal waveforms (or sinusoidal tracks) required to accurately represent a 
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particular sound depends on the type of sound being analysed. For example, the steady 
state portion of a flute could be well represented by only three or four tracks, whilst a 
timbrally rich piano would require many more. Figure 2 illustrates how an 11 ms segment 
of a flute waveform can be modelled by four sinusoidal tracks. Even though a single 
pitched example is given in the illustration, it should be appreciated that a sinusoidal 
model could also represent more complex sound signals. 
 

 
 

Figure 2 Modelling a flute recording by four sinusoidal tracks 
 
 The benefit of representing a complex sound through sinusoids is that these 
sinusoidal tracks can easily be represented as mathematical functions and can therefore 
be accordingly manipulated. Time-scaling via sinusoidal modelling then becomes the 
process of extending or compressing each individual sinusoidal track prior to summation, 
which could be achieved though the use of time-domain techniques described above, but 
is generally achieved through mathematical synthesis of sinusoidal magnitude and phase 
values. As the sinusoidal model is capable of representing complex multi-pitch sounds it 
can also be used to time-scale these types of sounds and therefore overcomes the 
limitations of time-domain algorithms. 
 
 The principal difficulty with sinusoidal modelling techniques is to obtain an 
accurate sinusoidal representation of the signal in the first place, which is a continuing 
area of interest within the research community. In general a reasonable representation can 
be obtained using a Short-Time Fourier Analysis, which can yield a perceptually accurate 
representation if no modifications are applied, but can however introduce objectionable 
artefacts when time-scaling is applied. The primary cause of these artefacts is a loss of 
phase coherence between sinusoidal tracks, which is perceived as a reverberant type 
effect in the time-scaled signal. Phase coherence is lost because of slight inaccuracies in 
determining the exact frequency at each instant in time of the sinusoidal tracks – these 
inaccuracies will always be present due to the time frequency uncertainty principle 
(similar to Heisenberg’s uncertainty principle for mechanical systems). 
 
 Another method used which is similar to sinusoidal modelling is known as the 
phase vocoder. While the sinusoidal model attempts to extract a relatively small number 
of perceptually dominant sinusoidal tracks from a sound, the phase vocoder essentially 
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extracts a relatively large fixed number of sinusoids from a sound via a filterbank. The 
principal of extending or compressing each sinusoidal term in order to time-scale remains 
the same for both techniques. The advantage of the phase vocoder is that it is more robust 
than the sinusoidal model, since it does not require any rules to track or extract sinusoidal 
components. However, the filtering process employed by the phase vocoder introduces 
interference terms that can be problematic. The last ten years have seen a merging of the 
two techniques to resolve these issues (see Laroche and Dolson 1999a). 
 
2.3 Hybrid technique 
 
From what has been described in the previous two sections, it can be appreciated that 
time-domain techniques are efficient but rely on the presence of a strong periodic element 
with the waveform being time-scaled in order to produce high quality results; frequency-
domain techniques are more robust, in that they can be applied to more general signals, 
but they are less computationally efficient and introduce an objectionable artefact into the 
time-scaled output. A hybrid approach, developed by David Dorran (2005), attempts to 
achieve the benefit of both time and frequency approaches to improve upon the quality of 
output and reduce computational demands. 
 
 The hybrid technique takes advantage of a degree of flexibility that exists in the 
choice of phase used during synthesis of each sinusoidal track within frequency-domain 
approaches. A thorough mathematical analysis shows that deviating from the 
mathematically ‘ideal’ phase values results in amplitude and frequency modulations 
entering each sinusoidal component. However, an empirical psycho-acoustic analysis 
(Zwicker and Fastl 1999) has shown that the human auditory system is insensitive to 
slight modulations in both amplitude and phase. Using these results, the maximum phase 
deviation (or tolerance) which can be introduced without introducing audible artefacts 
has been established. This phase tolerance can then be used to ‘push or pull’ the 
sinusoidal tracks back into a phase coherent state, thereby removing the reverberant 
artefact associated with frequency-domain techniques. The set of target or ‘coherent’ 
phases are actually taken from the original signal, since these phases are guaranteed to 
preserve the phase relationship between sinusoids without the introduction of 
reverberation. The choice of these sets of target phases is extremely important, since a 
‘good’ set of target phases will reduce the transition time for sinusoidal tracks being out 
of phase to being back in perfect phase coherence; a shorter transition time reduces the 
amount of reverberation introduced. The technique used to identify the best set of target 
phases is based upon ‘correlation’, which is also used within time-domain techniques to 
identify the local pitch period. 
 
 The current implementation of the hybrid system is particularly efficient for 
relatively small time-scale factors. Figure 3 illustrates its computational advantage when 
compared to an improved phase vocoder (Laroche and Dolson 1999b) – an 
implementation of the phase vocoder which draws on sinusoidal modelling techniques. 
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Figure 3 Ratio of computations required for the improved phase vocoder 
approach to the number of computations required using the hybrid 
approach 

 
 Subjective listening tests have also shown that the hybrid approach produces a 
higher quality of output to frequency-domain techniques for speech signals. No 
significant improvement was observed for music signals. This was attributed to the fact 
that music generally contains more reverberation than speech, therefore the introduction 
or reduction of a relatively small amount of reverberation is not objectionable. Tables 1 
and 2 present the results obtained from 14 subjective listening tests. It can be seen that 
the algorithm is both robust and efficient and produces high quality results for both 
speech and a wide range of polyphonic audio. These attributes make it particularly 
suitable for the time-scale modification of general audio where no prior knowledge of the 
input signal exists, for example, during the time-scale modification of movies or 
television/radio adverts, in which both speech and/or music are typically present. 
 

Test subjects 
indication 

Percentage 
of total  

Hybrid much better 
than phase vocoder 33.0% 

Hybrid slightly 
better than phase 
vocoder 

43.5% 

Hybrid equal to 
phase vocoder 18.0% 

Hybrid slightly 
worse than phase 
vocoder 

5.5% 

Hybrid much worse 
than phase vocoder 0.0% 

Table 1 Summary of listening test results comparing the use of the hybrid 
approach against a phase vocoder approach for the time-scale modification of speech 
for factors in the range 0.6–1.75. 
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Test subjects 

indication 
Percentage 

of total  
Hybrid much better 
than phase vocoder 7.5% 

Hybrid slightly 
better than phase 
vocoder 

25.0% 

Hybrid equal to 
phase vocoder 42.5% 

Hybrid slightly 
worse than phase 
vocoder 

20.0% 

Hybrid much worse 
than phase vocoder 5.0% 

Table 2 Summary of listening test results comparing the use of the hybrid 
approach against a phase vocoder approach for the time-scale modification of music 
for factors in the range 0.6–1.75. 

 
3 Sound source separation 
 
Sound source separation refers to the task of extracting individual sound sources from 
some number of mixtures of those sound sources. As an example, consider the task of 
listening in humans. We have two ears: this means that our auditory cortex receives two 
sound mixtures, one from each ear. Through complex neural processing, the brain is able 
to decompose these mixtures into perceptually separate auditory streams. A well-known 
phenomenon known as the ‘Cocktail Party Effect’ (Cherry 1953) illustrates this process 
in action. In the presence of many speakers, humans exhibit the ability to tend to or focus 
on a single speaker despite the surrounding environmental noise. In the case of music 
audition we exhibit the ability to identify the pitch, timbre and temporal characteristics of 
individual sound sources within an ensemble music recording. This ability varies greatly 
from person to person and can be improved with practice but is present to some degree in 
most people. Even young children whilst singing along to a song on the radio are carrying 
out some form of sound source separation in order to discern which elements of the 
music correspond to a singing voice and which do not. 
 
 In engineering the same problem exists. A signal is observed which is known to 
be a mixture of several other signals. The goal is to separate this observed signal into the 
individual signals of which it is comprised. This is the goal of our research. In particular, 
our research is concerned with separating individual musical sound sources from 
ensemble music recordings for the purposes of audition, analysis, and transcription. 
Observing only the mixture (or mixtures) of these instruments, i.e. ‘the song’, we aim to 
recover each individual sound source present in the song. The applications of source 
separation include the following. 
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• Music education: A common problem for amateur musicians is that of 
identifying exactly which instrument is playing which note or notes in 
polyphonic music. A sound source separation facility would allow the user to 
take a standard musical recording such as a song on a compact disc, and extract 
an individual instrument part. 

 
• Music transcription: Transcription is the process of transforming some set of 

audio events into some form of notation. In the case of music, it involves 
creating a musical score from audio. This task is usually carried out by humans 
and is both expensive and laborious. Computerised music transcription tools do 
exist but are limited to monophonic transcription, and are not yet highly 
perfected. Sound source separation allows a polyphonic mixture to be 
decomposed into several monophonic mixtures thus allowing current 
transcription techniques to be applied. 

 
• Audio analysis: In many real-world scenarios, audio recordings can often be 

corrupted by unwanted noise from sound sources which are proximal to the 
source of interest. Forensic audio analysis is one such example. Source 
separation can facilitate the isolation of particular sounds of interest within 
badly corrupted recordings. 

 
• Remixing and up mixing: Multi-channel audio formats are becoming 

increasingly popular, such as the Dolby 5.1 and DTS surround sound formats 
which have become standards in the film industry and are gaining ground in the 
music industry too. Up mixing is the process of generating several reproduction 
channels out of only one or two mixtures. Old films and music, for which the 
multi-track recordings are unavailable, could be remastered for today’s modern 
formats. 

 
3.1  Existing approaches 
 
Currently, the most prevalent approaches to this problem fall into one of two categories, 
Independent Component Analysis (ICA) (see Hyvarinen 1999 and Casey 2000), and 
Computational Auditory Scene Analysis (CASA) (see Rosenthal and Okuno 1998). ICA 
is a statistical source separation method which operates under the assumption that the 
latent sources have the property of mutual statistical independence and are non-gaussian. 
In addition to this, ICA assumes that there are at least as many observation mixtures as 
there are independent sources. Since we are concerned with musical recordings, we will 
have at most only two observation mixtures, the left and right channels. This makes pure 
ICA unsuitable for the problem where more than two sources exist. One solution to the 
degenerate case (where sources outnumber mixtures) is the DUET algorithm (Jourjine et 
al. 2000; Rickard et al. 2001). This approach assumes that latent sources are disjoint 
orthogonal in the time-frequency domain. This assumption holds true for speech signals 
but not for musical signals, since western classical music is based on harmony which 
implies a significant amount of time-frequency overlap. CASA methods on the other 
hand, attempt to decompose a sound mixture into auditory events which are then grouped 
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according to perceptually motivated heuristics (Bregman 1990), such as common onset 
and offset of harmonically related components, or frequency and amplitude co-
modulation of components. 
 
3.2 Azimuth Discrimination and Resynthesis 
 
In the following section, we present a novel sound source separation algorithm called 
ADRess (Azimuth Discrimination and Resynthesis) which was developed at DIT in 2003 
(Barry et al. 2004a and 2004b). The algorithm which requires no prior knowledge or 
learning, performs the task of separation based purely on the lateral displacement of a 
source within the stereo field; in other words, the position of the sound source between 
the left and right speakers. The algorithm exploits the use of the ‘pan pot’ as a means to 
achieve image localisation within stereophonic recordings. As such, only an interaural 
intensity difference exists between left and right channels for a single source. Gain 
scaling and phase cancellation techniques are used to expose frequency dependent nulls 
across the azimuth domain, from which source separation and resynthesis is carried out. 
 
3.2.1 Background 
 
Since the advent of multi-channel recording systems in the early 1960s, most musical 
recordings are made in such a fashion, whereby N sources are recorded individually, then 
summed and distributed across two channels using a mixing console. Image localisation, 
referring to the apparent position of a particular instrument in the stereo field, is achieved 
by using a panoramic potentiometer. This device allows a single sound source to be 
divided into two channels with continuously variable intensity ratios (Eargle 1969). By 
virtue of this, a single source may be virtually positioned at any point between the 
speakers. So localisation in this case is achieved by creating an interaural intensity 
difference (IID) – a well-known phenomenon (Rayleigh1875). The pan pot was devised 
to simulate IIDs by attenuating the source signal fed to one reproduction channel, causing 
it to be localised more in the opposite channel. This means that for any single source in 
such a recording, the phase of a source is coherent between left and right, and only its 
intensity differs. It is precisely this feature that enables us to perform separation. Figure 4 
shows a typical scenario for panning multiple sources in popular music. 

 
Figure 4 An example of the likely pan positions of sources in popular music 

 
3.2.2 Method used in ADRess 
 
A stereo recording contains two channels only (typically left and right), but any number 
of sources can be virtually positioned between the left and right speakers by varying the 
relative amplitude in each channel for a particular source. The problem is then to recover 
an arbitrary number of sources from only two mixtures. In order to achieve source 
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separation in ADRess a raised cosine window is applied to a frame of 4,096 samples of 
audio in each channel. A Fast Fourier Transform (FFT) is then performed, taking us into 
the complex frequency domain. This yields 2,048 linearly spaced discrete frequency 
bands of width 10.71 Hz. For each band, iterative gain-scaling is applied to one channel 
so that a source’s intensity becomes equal in both left and right channels. A subtraction of 
each complex band in each channel at this point will cause that source to approach a local 
minimum due to phase cancellation. The cancelled source is then recovered by creating a 
‘frequency-azimuth’ plane, which is analysed for local minima along the azimuth axis. 
These local minima represent points at which some gain scalar caused phase cancellation. 
It is observed that at some point where an instrument cancels, only the frequency 
components which it contained will show a local minima. The magnitude and phase of 
these minima are then estimated and an IFFT in conjunction with an overlap add scheme 
is used to resynthesise the cancelled instrument. This process is carried out on every 
frame of audio independently for the left and right channel for all time. Figure 5 shows 
this process in action for a single frequency band centred on K = 110Hz. In this example, 
the left channel is scaled from 1 down to 0 in discrete steps of 0.01. At each iteration, the 
complex value of the Kth scaled left channel is subtracted from the complex value in the 
same band in the right channel. The modulus of this operation is then taken, as shown in 
the plot below. At some point, this value approaches to a minimum; in this case when the 
gain scalar = 0.42. This signifies that a source is present at this location in stereo space. 
The magnitude of the component for that source is calculated as A = Kmax – Kmin. This is 
repeated for all bands as shown in Figure 5. 
 

 
Figure 5 Gain scaling and subtraction for a single band in the frequency domain for 

the left side of the stereo field only. A similar operation yields the right side 
of the stereo field. 

 
In order to show how frequency components belonging to a single source are clustered on 
the azimuth axis, two sources were synthesised, each containing five non-overlapping 
partials. Each source was panned to a unique location left of centre in the stereo field. 
Figure 6 shows the frequency azimuth plane created by ADRess to recover these sources. 
Frequency is depicted along the Y axis and azimuth along the X axis with amplitude 
represented by colour intensity. 
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Figure 6 The frequency azimuth spectrogram shown here represents the virtual stereo 

space between the left channel and the virtual centre channel 
 

It can be seen that the five frequency components from each source have their minima 
clustered along the azimuth axis. The frequency azimuth spectrogram shows the location 
of sources according to the cancellation points along the azimuth axis but, in order to 
resynthesise, we need the invert these nulls, since the amount of energy lost through 
cancellation is proportional to the actual energy contributed by the source. When the nulls 
are inverted we get a more intuitive representation of each individual source as 
demonstrated in Figure 7. 
 

 
Figure 7 By inverting the nulls of the frequency azimuth composition the frequency 

composition of each score can be clearly seen 
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Figure 5 illustrates how ADRess decomposes the left channel mixture in order to reveal 
the frequency composition of the latent sources. It should be borne in mind that the plots 
in figure 6 and 7 represent the decomposition of a single frame of audio data; as each 
consecutive frame is processed, the composition of each source will change in both 
frequency and amplitude but in the majority of cases the source position (azimuth) in the 
stereo field will not. It is for this very reason that azimuth is used as the cue to identify 
each source. By summing energy at all frequencies located at different points along the 
azimuth axis an energy distribution plot emerges, and by doing this for all time frames a 
time-azimuth plot, as shown in Figure 8, is achieved. Figure 8 shows source activity in 
the stereo field with respect to time. A similar two dimensional visualisation updated in 
real time is presented to the user in order to indicate source positions in the real-time 
application. 
 

 
 
Figure 8 The plot displays the energy distribution of sources across the stereo field with 

respect to time. (A source in the centre can clearly be seen as well as several 
other less prominent sources in the left and right regions of the stereo field.) 

 
 The algorithm has been shown to work for a wide variety of musical recordings, 
some examples of which can be found at http://eleceng.dit.ie/dbarry/audio.html. The time 
domain plots in Figure 9 show the separation results achieved for a jazz recording 
containing saxophone, bass, drums and piano. 
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Figure 9 The two plots on the left are the left and right mixtures of a stereo recording. 

The four plots on the right are the individual instruments separated using the 
ADRess algorithm 

 
3.3 Single channel source separation 
 
The task of single channel source separation is significantly more difficult to achieve, 
nevertheless the DiTME team has given some consideration to the problem. In Barry et 
al. 2005 a method for detecting and extracting drums and other percussive signals from 
single channel music mixtures presented. The technique involves taking the first order 
log derivative of a short time Fourier transform. Following this, the number of positive 
tending bins are accumulated to form a percussive feature vector. The spectrogram is then 
modulated by this feature vector before resynthesis. Upon resynthesis only the percussive 
elements of the signal remain. 
 

 
Figure 10 The first of the four plots here shows the original signal which is a piece of 

rock music. The second plot shows the percussive feature vector produced by 
our algorithm. The final two plots show the detection results of two other 
well-known techniques used for transient detection. 

 
4 Music transcription within Irish traditional music 
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Irish traditional music has passed from generation to generation largely by oral 
transmission: hence the lack of transcription of this valuable cultural heritage. In 
researching for his Ph.D. as a member of the DiTME team, Mikel Gainza made a number 
of significant contributions in digital signal processing techniques to provide an 
understanding of the nature of audio signals in traditional music performance. Traditional 
music is more monophonic in nature than classical or other forms of music. It may be 
played as a solo performance permitting the musician to express individual nuance in 
style and ornamentation, or in unison with other instruments. However, simplistic 
harmonic accompaniment has also been incorporated in recent years. In his Ph.D. thesis 
‘Music Transcription within Irish Traditional Music’, Gainza has identified important 
features of recorded notes, in particular note onset detection characteristics associated 
with different traditional instrument types. The ‘slow’ onset characteristic of the tin 
whistle has been carefully analysed. Ornamentation and transcription in traditional music 
also features in Gainza’s research. In endeavouring to develop a robust automatic music 
transcription system, note feature characteristics must be understood. The ability to 
accurately detect note onset is particularly important as it provides an accurate means of 
recognising note commencement or event variation. 
 
 A review of existing onset detection methods in Gainza’s Ph.D. (2006) concludes 
that the main problems encountered by existing approaches are related to frequency and 
amplitude modulations, in fast passages such as legato, in the detection of slow onsets, 
and in detecting ornamentation events. A review of existing pitch detection methods was 
also undertaken in this thesis, which highlights that a system that detects the different 
types of ornamentation within Irish traditional music has not yet been implemented. In 
addition, the review shows that periodicity based methods are less accurate in application 
to polyphonic signals. 
 
 In order to overcome the problems identified in the literature review, different 
applications for onset, pitch and ornamentation detection are presented in Gainza’s research. 
These are summarised in sections 4.1 to 4.4. 
 
4.1 Onset detection system applied to the tin whistle 

 
First an onset detection method which focuses on the characteristics of the tin whistle within Irish 
traditional music was developed. This is known as the Onset Detection System applied to the 
Tin Whistle (ODTW). (See Gainza et al. 2004a.) The different blocks of the proposed onset 
detector are depicted in Figure 11. 
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Figure 11 Overview of ODTW 

 A time-frequency analysis is first required, which splits the signal into different 
frequency bands. The energy envelope is calculated and smoothed for every band. Peaks 
greater than a band dependent threshold in the first derivative function of the smoothed 
energy envelope will be considered as onset candidates. Finally, all band peaks are 
combined to obtain the correct onset times. 
 
 The onset detection system utilises knowledge of the notes and modes that the tin 
whistle is more likely to produce, and the expected blowing pressure that a tin whistle 
produces per note. Problems arising in respect of legato playing in onset detection are 
catered for by utilising a multi-band decomposition, where one band is utilised per note. 
In an effort to reduce the effect of amplitude modulations, different novel thresholding 
methods have been implemented. 
 
 By using these methods in conjunction with an optimisation of other system 
parameters, the onset detection system deals with moderate signal amplitude 
modulations. A comparison was made of the ODTW against existing onset detection 
methods, configured with their respective best performing parameters: the ODTW has 
provided the best results. 
 
4.2 Onset detection system based on comb filters 
 
The ODTW provides a remarkable improvement on detecting the slow onset of the tin 
whistle. Nevertheless, problems of strong amplitude and frequency modulations are still 
present in the ODTW system. However, these limitations are overcome by a technique 
for detecting note onsets using FIR comb filters which have different filter delays 
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(Gainza et al. 2005). In Figure 12 a block diagram illustrating the different components 
of the comb filters system is depicted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Onset detection system based on comb filters (ODCF) 
 
 The onset detector focuses on the harmonic characteristics of the signal, which are 
calculated relative to the energy of the frame. Both properties are combined by utilising 
FIR comb filters on a frame-by-frame basis. In order to generate an onset detection 
function the changes of the signal harmonicity are tracked. This produces peaks in the 
harmonicity changes that a new onset provides in the signal. 
 
 The method relates the harmonicity detection to the energy of the analysing 
frame, which is suitable for detecting slow onsets, and provides an accurate onset 
estimation time. The approach is robust for dealing with amplitude modulations: if the 
energy of the signal changes between successive frames (but not its harmonicity) the 
onset detection function remains stable. In addition, the method is robust to frequency 
modulations that gradually occur in the signal, since the signal harmonicity does not 
change considerably between frames. 
 
 Apart from amplitude modulations, frequency modulations can also arise in the 
signal, which consequently affect the onset detection accuracy. In Figure 13, the onset 
detection function of a tin whistle signal playing E5 is depicted in the bottom plot. The 
middle and top plots depict the waveform and the spectrogram of the tin whistle signal 
respectively, where the amplitude and frequency modulations that arise in the signal can 
be seen. The E5 note depicted in Figure 13 is played using a slide effect, which inflects 
the pitch to reach F5#, which means that a modulation between approximately 659 Hz to 
740 Hz has occurred. 

Time / Frequency
Analysis

YDmin

Audio Signal

YDmax

Dmin

Dmax

Comb
Filtering

Frame

"Spectral fit"
Difference

Onset detection
     function

Post-processing
"Spectral fit"
Calculation



Level3 – June 2007-Issue 5 

 

Fr
eq

ue
nc

y

0 0.5 1 1.5 2

x 104

2000

4000

6000

8000

10000

12000

14000

0 0.5 1 1.5 2

x 104

A
ud

io
 s

ig
na

l

0 0.5 1 1.5 2

x 104Sample number

O
D

C
F

 
Figure 13 Onset detection function by using the ODCF (bottom plot) of a tin whistle 

signal (middle plot), whose spectrogram is depicted in the top plot 
 
 The onset detection function of Figure 13 depicts very distinctive peaks at the 
position of the onsets. It can also be seen that the slide effect does not alter the accuracy 
of the detection. The onset detector has been evaluated by using two different databases, 
which comprise tin whistle tunes and other Irish traditional music instrument tunes 
respectively. The results show a clear improvement upon comparison with existing onset 
detection approaches. 
 
4.2 Automatic ornamentation transcription 
 
The ODTW and ODCF systems provide a remarkable improvement on detecting the slow 
onsets. However, the problem related to the detection of ornamentation events in onset 
detection systems is not overcome by the systems, which assume that close onset 
candidates belong to the same onset. The latter limitation is overcome by the 
ornamentation detector outlined in Figure 14 (Gainza et al . 2004b; Gainza and Coyle 
2007). The system detects audio segments by utilising an onset detector based on comb 
filters, which is capable of detecting very close events. In addition, a novel method to 
remove spurious onsets due to offset events is introduced. The system utilises musical 
ornamentation theory to decide whether a sequence of audio segments corresponds to an 
ornamentation musical structure. 
 
 The different parts of the ornamentation transcription system presented here are 
depicted in Figure 14. Firstly, the onset detection block is described, from which a vector 
of onset candidates is obtained. Next, spurious onset detections due to offset events are 
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removed. Following this, audio segments are formed and divided into note and 
ornamentation candidate segments. Next, the pitch of the audio segments is estimated. 
Finally, single and multi-note ornaments are transcribed. 
 

 
Figure 14 Ornamentation transcription system based on comb filters 

 
 Consider Figure 15 where a signal excerpt containing a roll played by a flute is 
depicted in the top plot. The ODF of the signal generated by utilising the ODCF is 
depicted in the bottom plot. It can be seen that the ODCF provides a distinctive peak at 
the location of the new events in the signal, which we denote as onn. 

 
Figure 15 B5 roll – D5 – B5 sequence played by a flute 

 
 Every onset candidate onn is matched to the next onset candidate in time order 
onn+1 to form audio segments Sgn = [onn, onn+1]. Next, a table of audio segments is 
formed, wherein the second and third columns denote the beginning and ending of the 
audio segments. As an example, Table 3 shows the audio segments of the signal depicted 
in Figure 15. 
 
n onn (sec)  onn+1 (sec) Sgn P(n) SNOr MN Or 
1 6.235  6.42 note B5  Roll 
2 6.42 6.467 orn C#6 cut Roll 
3 6.467 6.606 note B5 cut Roll 
4 6.606 6.653 orn A5 str Roll 
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5 6.653 6.873 note B5 str Roll 
6 6.873 7.07 note D5   
7 7.07 … note B5   

Table3 Table of audio segments of Figure 15 (top plot) 
 
 Next, according to time duration, the audio segments are split into note and 
ornamentation segment candidates as follows: 

Te   on - on if          note  Sg
Te  on - on if     orn         Sg

n1nn

n1nn

>=
<=

+

+  (1) 

where Te is the longest expected ornamentation time for an experienced player, which 
has been analytically set to Te= 70ms. The Sgn segment type is shown in the fourth 
column of the audio segments table, as can be seen in Table 3. 
 
 In order to obtain the pitch of the audio segments, a similar method to that of 
Brown (1992) is utilised. Following this, the fundamental frequency estimation is refined 
by using parabolic interpolation (Serra 1989). The pitch of each audio segment Sgn is 
shown in the fifth column of Table 3, and is denoted as P(n). 
 
4.3.1 Single-note ornaments transcription (cuts and strikes) 
 

• The cut momentarily increases the pitch. By considering Figure 15 for example, 
it can be seen that the second and third segments in Table 3 are an ornamentation 
and a note segment. In addition, P(2)= C#6 is higher than P(3) = B5. 
Consequently, B5 has been ornamented with a cut in C#6, and both segments 
together form a cut segment. 

• The strike separates two notes of the same pitch by momentarily lowering the 
pitch of the second note. A strike ornament that separates two notes is also present 
in Figure 15 example. From Table 3 it can be derived that the fifth segment is a 
B5 note, which is separated from another B5 note by using the strike represented 
by the fourth segment. 

 
4.3.2 Multi-note ornamentation transcription 

 
Cranns and rolls are formed by combining ornamented and unornamented slurred notes 
of the same pitch. 

• The roll is formed by a note followed by a cut segment and a strike segment. By 
considering Table 3, it can be seen that the combination of a B5, a cut segment 
and a strike segment form a roll, where the three note segments have the same 
pitch B5. The short roll version removes the first unornamented note. 

• The crann segment structure is similar to the roll. The difference lies in the use of 
cuts alone to ornament the notes. The short crann removes the first 
unornamented note 

• The shake is a four notes ornament formed by rapid alterations between the 
principal note and a further note one whole or one half step above it (Larsen 
2003). It commences with the three ornaments and finishes with the principal 
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note. An example of a shake can be seen in Figure 16 (top plot), where an excerpt 
of a tin whistle tune is depicted. In the bottom plot the ODF generated by the 
ODCF is also depicted. By obtaining the pitch of those segments, a sequence of 
three ornaments (F#5, E5, F#5) and the principal note again E5 is obtained, which 
corresponds to a shake ornament. 
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Figure 16 Example of a shake played by a tin whistle 

 
This attempt to transcribe the most common types of ornamentation has never been 
previously attempted and is a particularly novel contribution to the field of onset 
detection and music transcription. The onset time estimation provided by this system 
suitably reflects Irish traditional music features, as the onset is estimated at the beginning 
of the ornamentation event. 
 
Consequently, all of the difficulties encountered by existing onset detection approaches 
have been dealt with by the systems described in Sections 4.1 to 4.3. 
 
 
4.4 Multi-pitch estimation using comb filters 
 
When playing in unison, existing periodicity based pitch detection methods, such as FIR 
comb filters, might be utilised to transcribe the notes. However, with the inclusion of 
harmonic accompaniment the performance of these methods degrades. In an effort to 
detect the accompaniment chords, a multi-pitch detection system has been implemented 
(multi-pitch estimation using comb filters (MPECF); see Gainza et al. 2005b), which 
combines the structure of the multi-pitch detection model of Tadokoro et al. (2003) with 
the use of a more accurate comb filter and the weighting method of Martin (1982) and 
Morgan et al. (1997). The system detects the harmonic chords provided by a guitar 
accompaniment of a tin whistle. 
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 In order to transcribe the musical chords played by the harmonic accompaniment, 
a system based on Tadokoro’s model is utilised, and is depicted in Figure 17. As in 
Tadokoro (2003), the MPECF filter that produces an amplitude minimum represents the 
first detected note. Next, other notes in the audio signal are detected by iteratively 
connecting the output of the filter that has produced the minimum with the input of the 
parallel comb filter system (see Tadokoro 2003). The same filtering process is repeated 
again until all the notes have been extracted. After estimating the notes, an existing major 
or minor chord present is transcribed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17 MPECF system for chord detection 

 
 
 The system has been evaluated using three different databases, comprising 
synthetic monophonic and polyphonic signals, real guitar chords, and mixtures of guitar 
chords accompanying tin whistle tunes. The results are accurate for all of the databases, 
where the MPECF system is capable of detecting four simultaneous notes in polyphony 
(three note chord and a tin whistle note). 
 
 
5 New emerging Enterprise Ireland and European Framework projects 
 
Following upon the success of the DiTME project, the Digital Audio Research group has 
been successful in winning research funding on a number of fronts, with success in an 
FP6 European Framework, an Enterprise Ireland Commercialisation funded project, and a 
DIT Abbest and a Strand 1 Ph.D. funded scholarship. There has been a significant 
increase in the number of researchers in the group, now standing at two postdoctoral 
fellows, one senior researcher (nearing completion of his Ph.D.), four full-time and two 
part-time Ph.D., and one full-time and one part-time MPhil research students. 
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5.1 Enriched access to sound archives through integration enrichment and 
retrieval 
 
In 2005, the Centre for Digital Music at Queen Mary University London and the Audio 
Research Group at DIT established a consortium of seven partners including three 
companies and four academic institutes in a bid for a European Framework project. The 
bid was successful and the project officially started in May 2006 and will run until 
November 2008. 
 
 Many digital sound archives still have limited access facility to incumbent users. 
Materials are often in different formats, with related media in separate collections, and 
with non-standard, specialist, incomplete or even erroneous metadata. Thus, the end user 
is unable to discover the full value of the archived material. To expose the inherent value 
of the archived material, powerful multimedia mining techniques are needed, in 
combination with content extractors, meaningful descriptors, and visualisation tools. 
There is also a need to improve retrieval effectiveness. Existing retrieval systems often do 
not take into account the specific nature of the media content. The ability to search 
collections by speech or musical features is rare. Thus retrieval techniques are restricted 
and inflexible. To address this, multiple retrieval techniques need to be merged and 
deployed, and similarity and structure must be conceptualised in order to provide a usable 
service. An efficient and effective retrieval system needs to be grounded in semantic 
description, similarity, and structure in order to provide rich functionalities related to the 
exploration of sound archives. 
 
 Another issue is that of providing appropriate interaction with and presentation of 
material for the end-users. An archive used by musicians and music students, for 
instance, requires that the material can be manipulated or modified appropriately at 
playback. Archives of recorded broadcasts need to emphasise appropriate segmentation 
and interactive speech recognition features. In addition, the creation of tailored 
collections with customized material has been identified as a strong user need in access 
systems. These scenarios necessitate the development of enhanced and appropriate 
retrieval systems, as well as organisational structures and the means to interact with the 
presentation of materials. This demands appropriate metadata that can be automatically 
created in order to deliver, share or organise the archives. 
 
 This is the motivation for the two and a half year European project, ‘Enabling 
Access to Sound Archives through Integration, Enrichment and Retrieval’ (EASAIER). 
EASAIER allows archived materials to be accessed in different ways and at different 
levels. The system will be designed with libraries, museums, broadcast archives, and 
music schools and archives in mind. However, the tools may be used by anyone 
interested in accessing archived material – amateur or professional – regardless of the 
material involved. Furthermore, it enriches the access experience as well, since it enables 
the user to experiment with the materials in exciting new ways. 
 
 The focus of DIT’s research in this project is to provide a set of real-time access 
tools which will allow the user to process the retrieved audio in useful ways. DIT will 
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provide the following tools: time scaling, pitch shifting, source separation, noise 
reduction, and equalisation and enhancement tools. 
 
5.2 Interactive Music Archive Access System 
 
The Interactive Music Archive Access System (IMAAS) project, funded by Enterprise 
Ireland, is a cross-institute collaboration with the Dublin and Cork Institutes of 
Technology. The Irish Traditional Music Archive (ITMA) under the direction of Nicholas 
Carolan is also a valued partner in the project. The collaboration arose out of mutual 
interests and the strong links between Dr Derry Fitzgerald of CIT and the Audio Research 
Group at DIT. Dr Fitzgerald, who had originally obtained his Ph.D. in the field of signal 
processing for audio at DIT some years previously, together with Dr Matt Cranitch, 
consorted with the ITMA and DIT in a bid to build an interactive music archive access 
system. The goal is to provide remote users with a web-based access system for music 
archives such as the traditional music archive in Dublin. The project aims to contribute to 
the emerging field of music information retrieval and efficient musical descriptors. Such 
descriptors include time signature, key signature, tempo and tune type, to name but a few. 
With this information available as metadata, remote users can query large databases of 
music quickly and efficiently in order to retrieve only the most relevant musical data. The 
end user is also provided with some powerful audio processing tools to manipulate, 
analyse and visualise the music which has been retrieved. The project commenced in 
2006 and comes to completion in November 2009. 
 
5.3 Audio Research Group 
 
Whilst the individual research themes of the DiTME project – audio time-scale 
modification, sound source separation, and music transcription (see Sections 2 to 5) –
have resulted in significant contributions in advancing knowledge in their respective 
fields, the combined research outcomes have resulted in an even greater contribution to 
the field of audio research. The emerging talents of Mikel Gainza, Dan Barry, David 
Dorran and team mentor Eugene Coyle of DIT, and Derry Fitzgerald who completed his 
Ph.D. at DIT before taking up an Irish Research Council for Science, Engineering and 
Technology (IRCSET) scholarship under the guidance of Matt Cranitch at CIT, have 
provided the core of a significant research group. 
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 With commencement of the EASAIER, IMAAS, ABBEST and VOCAL projects, 
the Audio Research Group at DIT currently comprises 11 researchers. In addition to the 
named projects, research is underway in speech synthesis, surround sound algorithms, 
adaptive music for gaming, musical instrument recognition, and intelligent audio 
environments. 
 
 In addition to a registered patent in sound source separation, to date the DIT 
Audio Research Group has published over 35 peer reviewed papers on various aspects of 
signal processing for audio. This has been supplemented by close on 20 publications by 
the CIT partner group. For more information about the group visit 
http://www.audioresearchgroup.com. 
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